平成 23 年元旦発生の国道 160 号石川県七尾市庵地区法面崩壊など 幾つかの融雪期崩壊現場の特徴と傾向

山田 宗明*1 川村 國夫*2 森影 篤史*3

1.はじめに

積雪深 30cm 程度と,多量な融雪もない気象状況下で,国 道 160 号石川県七尾市庵地区の道路法面が崩壊した.この 崩壊は,法面地形の集水特性と過去の崩壊履歴など不安定 要因によると考えられる.このため,これまでの崩壊実例を 調査したところ,崩壊現場には特徴と傾向が異なる二つの 現場群に分かれることが判明した.ここでは,二つの現場実 例を分ける閾値に加えて法面の地形特徴を考慮した融雪期 による道路管理への視点を示す.

写真1平成23.1.1国道160号七尾市庵地区道路法面崩壊

2. 崩壊状況¹⁾

平成 23 年正月元旦, 22 時頃, 積雪深 30cm 程度と驚く程 の積雪深ではなく, また気温の急上昇による大きな融雪も ない気象状況下で, 国道 160 号七尾市庵地区の道路法面は, 写真 1 のように, 奥行き約 24m, 幅 13m, 厚さ 0.5m~1.0m 規 模で滑落した. 崩壊土砂は, 多くの水分を含み, 国道へ一挙 に流下して, 通行障害を起こした.

翌日1月2日未明から現場を調査すると、後に詳述する ように、崩壊地は道路法面工(吹付け法枠工)の上方部か ら下部側方部への平均勾配45°程度の傾斜面で発生し、そ こに流れる沢部地形からは流水が確認できた. 崩壊地盤は基盤上の表土層であり,滑落跡は礫混じり砂 岩状の基盤岩が露出していた.当日,周辺には,30cm 強の積 雪深があり,気温は0℃~2℃程度で上昇があり,気象上では 多くはない融雪水が発生したものと思われる.

崩壊直後は,崩土が残存して,周囲の不安定土塊も加えれ ば,今後とも約数十 m3 の増破が懸念された.このため,迅速 に崩土を除去し,残存する不安定土塊の落下に対するポケ ットを確保するため,道路に 2 段積み土嚢を設置して対応 した.土嚢設置後の 1 月 2 日には,監視のもと,国道は片側 交互通行で啓開することができた.

3. 気象状況と現場地形

3.1 崩壊直前の気象状況

七尾市庵地区法面崩壊の直前3日間の気象状況について, 現場近くの国土交通省沢野テレメータからのデータを図1 にまとめた.図1によれば,崩壊前の平成22年12月30日 12時頃の積雪深12cmから気温が0℃以下へ低下し,さらに 降雪が続き,翌日12月31日12時までの24時間で積雪深 約30cmに増加した.その後,翌年平成23年1月1日9時頃 までは,気温1℃以下程度でみぞれ交じり降水が多く,積雪 深は33cm~34cmと大きな変化はなかった(ちなみに,平 成22年31日20時の観測降水量21mm/時はみぞれ交じり の降水量であり,積雪深に大きな変化はなかった).

*1金沢河川国道事務所 *2 金沢工業大学地域防災環境科学研究所 *3 ㈱日本海コンサルタント

崩壊当日は, 平成 23 年 1 月 1 日 10 時頃から気温が 2℃ 以上へ上昇し, 積雪深が減少傾向を示した. 留意すべきは, 法面崩壊の直前 21:00 頃では積雪深が 30cm に減少し, 崩 壊に到った点である. この期日中の最大融雪深は, 約 4.5cm となり, 仮に, 雪密度 0.35(0.4) で換算した融雪量は 16mm(18mm), これに融雪時の降雨量(1 月 1 日 0 時から の) 21mm を加えても, 融雪水量 37mm/22 時間(39mm/22 時 間)となり, 驚くほどの大きな融雪状況ではなかった.

なお、七尾市の積雪深の再現期間(積雪確率)から,崩 壊直前の積雪深 30cm 程度は再現期間 2 年弱となり、ほぼ 毎年発生するか、もしくは 2 年以内に一度はある積雪深確 率となる.

3.2 現場の地質,地盤

崩壊地周辺の地質は、この辺りに広く分布する新第三紀 中新世中期~後期の礫岩・砂岩層(多根互層)であり、これ を基盤岩にした表土層から成っている.

崩壊直後のボーリング調査から,地盤構成は,GL0.0m~-0.9m で表土層,0.9m 以深で砂岩および礫砂岩が分布する. 特に,-0.9m~-2.7m までは風化による亀裂面が発達し,褐 色に酸化していた.なお,標準貫入試験 N 値は,GL-1m から 50 以上を示す.この調査から,崩壊地の不安定土層は,約 1m~2m 厚と想定でき,実際,図2と写真2に示すように,現 場の崩壊は約1m厚の薄い表土崩壊と確認できた.

図2 滑落すべり面となった表土層

3.3 現場地形

崩壊した法面周辺は,特徴的な地形を有する.図3は,直後の現場踏査による崩壊地と周辺斜面の地形状況を示す. 崩壊地(A)には,谷地形が貫き,その上流部には直頭部(B) ブロック斜面から側頭部(D)ブロック斜面に連なる勾配 1:0.8以上の遷急線が見られる.崩壊地は,この下部に

写真2表層滑落直後に基岩が露呈

当たる法面となる.そして,崩壊地(A)の滑落崖の直上部 (B)ブロック斜面には隣接(D)ブロックからほぼ急崖に近 い段差地形が認められる(図中の網目部).なお,崩落地 (A)の滑落崖付近では,湧水が確認できた.

現地踏査平面図

図3崩壊法面と周辺部の地形

一方,崩壊地(A)の左岸側崖部にある(F)ブロック斜面は, 一転して,遷緩線の拡がる斜面となっており,このことか ら崩壊地(A)と(F)ブロック斜面との境界部は,当然,段差 地形になる.ちなみに,崩壊地(A)法面の平均勾配がほぼ 1:1.0であるのに対して,この(F)ブロック斜面は1:1.2以 下の緩勾配をもつ.

以上から,崩壊地(A)の地形は,直頭部で遷急線の下部に 位置し,また,側頭部で急崖の下部になり,加えて,左岸隣 接部とは段差地形になる.つまり,典型的な集水する窪地 地形を形成する.このため,崩壊地(A)の法面は,その上部 と側方部の二方向から降雨や融雪水が流れ込み,加えて, 谷地形も通っていることから,気象観測データが示す降雨 量や融雪量以上の降水量が流入することに注目すべきで ある.

当然,崩壊地(A)に流入する時間帯は気象観測データが 示す降雨時間帯や融雪時間帯とも異なる時間帯となり,複 雑な降水特性を考えなければならない地形である.今回の 崩壊は,この特徴的な地形が強く影響したと考えられる.

4. 融雪による崩壊メカニズムと道路管理への視点

4.1 崩壊メカニズム

平成23年1月1日七尾市庵地区で発生した道路法面崩 壊は、その傾斜面地形の特徴にあった.積雪時にあって、急 崖や遷急線地形には積雪がほとんど付かない.このため、 急崖や遷急線地形に降った雪は、直後に下方の法面へ落下 したり、流入したりする.つまり、気象観測データ以上の積 雪深や融雪水が法面に積雪し、流入して、一部が法面浸透 へ、一部が積雪底面流で下方へ流下していく.

対象とした七尾市庵地区の道路崩壊法面は,まさにこの 地形特徴をもつため,図1で示した気象観測データ以上の 融雪水が想定され,法面を不安定化させる.また,現場は薄 い表土層から,すべり面も浅くなる.したがって,表土層の 有効せん断抵抗角は土被りが小さく,法面安定にほとんど 寄与しない.加えて,表土層と基盤岩との境界部にある地 下水位は短時間で表土層を飽和させ,有効粘着力も減少す る.このようにして,地下水面がすべり面となり,表土層が 滑落した.

さらに,強調するべきは,約半年前の平成22年6月1日 道路点検にて,崩壊法面の上頭部斜面で幅12m,高さ8m, 厚さ1mの表層滑落を発見し,湧水も見つかった点である. その崩落の発見状況を記したメモを図4に示す.この崩落 履歴が示す地形の特徴も今回の崩壊に影響し,不安定化を 誘引させたと考えられる.

以上から, 庵地区法面崩壊は, 後掲図 9 の不安定履歴を 受けた崩壊現場群の中でも, ① 急崖や遷急線下の地形に 位置すること, ② 直上部で崩落履歴が発生していたなど, 二重の不安定履歴を受けた典型的な崩壊実例となる.

図4 平成23年1月1日崩壊地と平成22年6月1日発見崩落地

図5 法面崩壊後の融雪期と非融雪期の日最高地下水位

4.2 融雪による地下水位特性

平成23年1月1日崩壊直後から,図3に示すボーリングBV1 孔で地下水位を計測した.この期間中,1月28日から2月22 日までが積雪・融雪期,それ以降7月20日までが非融雪期 となる.特に,融雪期の計測値に基づく浸透特性や地下水 位変化を検討した. 図5は,現場のベース地下水位は約GL-2mと浅く,融雪水 によって鋭敏な水位変化を見せる.融雪期の地下水位は, 融雪水量(雪密度0.35)と降雨量の合計値が30mm/日以下 では上昇せず,ほぼ横這いの水位を保つ.それらが約20mm/ 日以下になると,むしろ下降に転じ,0mm/日で急激に下降 する.このような地下水位特性は,崩壊法面が急勾配のた め,地下水位も急勾配となり,地下水の流速が大きく,流出 が速いことに起因する.

4.3 浸透解析シミュレーション

融雪水量による地下水位の予測は、法面の安定性評価に とって重要となり、道路管理にも寄与できる.このため、西 垣ら³⁾の理論から以下の手順で浸透解析を進めた.

① まず,非融雪期の降雨による地下水位の変化に注目して,解析水位が計測値に近似できるような地盤透水係数を同定する.解析の地盤モデルは図6に,また,同定できた地盤各層の透水係数を表1にそれぞれ示した.

図6 崩壊法面の地盤モデル

表1	浸透解析か	ら同	定で	きた	各批	般の	透水	係数
111	1又22月11月17	JP.		CIL	'ㅁ ㅗഥ'	m v	27/1	レドヌス

	透水係数		比貯留	有効
	Kxx	Куу	係数	間隙率
風化岩	7.00E-04	7.00E-04	1.00E-06	0.3
基盤岩	6.00E-03	6.00E-03	1.00E-06	0.3
緩み領域	1.00E-02	1.00E-02	1.00E-06	0.3

② 次に、同定できた透水係数から融雪期の地下水位が、 積雪深データからの融雪水量(雪密度0.35)と融雪時の 降雨量とが法面へ浸透するとして算定する。

図7には,融雪期から非融雪期までの計測地下水位とその解析値を示した.図7から,以下の結果が読み取れる. ① 非融雪期の解析地下水位が計測値とほぼ近似でき,同 定した透水係数は適正値として算定できた. ② 一方,同定できた透水係数に基づき,前述した融雪期の地下水位が降水量30mm/日程度以下では変化しない傾向に注目して,これを基準値30mm/日と設定した.この基準値未満では地下水位の上昇は寄与しないとする下式(1)の低減値Dを導入して解析を進めた.

D = exp [- a { 1 - (X / 30) }] (1) ここに,D: 低減率,X: 融雪水量と降雨量の合計値(浸 透量),a: 低減係数

浸透解析の結果, a=2で解析水位が計測値にもっとも近 似できた.この図7が意味することは, 集水する窪地地形で, 急勾配の浅い表土層では, 地下水位の上昇は基準値以上の 浸透量が必要となり, この雪密度0.35の大きな値が採用で きた(一般に, 融雪水量の換算値には0.35程度が採用され るが, 浸透量はその一部が地下水位に寄与する).一方で, 基準値未満の浸透量では地下水位に寄与する浸透量は 0.35より小さな値が妥当となる.この傾向は, 地下水勾配 が急で, 流出が速いことに起因するからと思われる.

図7 現場地下水位の計測値と解析値

なお、図7に示す最高地下水位GL-0.5mの法面安全率は Fs=0.87と算定できた.算定方法は、表土層下のすべり面が 浅いため、無限斜面の安定計算法を用いた.表土層の強度 定数は有効せん断抵抗角 Φ ²=35,(設計要領:道路編 北 陸地方整備局 H15.4)、有効粘着力 C²=4.8 KN/m2</sup>(崩壊 法面から逆算),単位体積重量 γ t = 19 KN/m3(上記出典 から)を採用した. 4.4 庵地区道路法面崩壊から道路管理への視点

平成23年1月1日に発生した国道160号七尾市庵地区道路 法面崩壊は,以下の教訓を与えた.

法面崩壊は、その地形の特徴が強く関わる.崩壊現場は、急崖や遷急線の下部に形成された傾斜面で、言わば、集水地形をもつ窪地状斜面であった。

② このような地形をもつ法面では、融雪深や降雨量が気象観測データ以上の値で法面に落下し、流入して、法面の安定性に影響を及ぼす。

以上から、今後の道路管理への視点は、融雪期、非融雪期 を問わず、このような地形をもつ道路法面や斜面の確認を 不可欠とする.このような集水地形をもつ窪地状傾斜面を 国道160号沿いで地図情報から指摘してみた.

その結果を図8に示す.なお,集水地形の抽出法 は,ArcGISのプラグインツールTauDEMを利用した.TauDEM で地表面流の方向を解析する.各メッシュに一定量の降雨 量を与えて流下させ,各メッシュごとにその上部メッシュ から流入する累積量を算定して,もっとも多く流入するメ ッシュやメッシュ群を集水地形として設定した.

図8 国道160号沿いの集水地形の抽出

図8からは、国道160号沿いに道路が影響を受ける幾つか の集水地形が認められた.取り上げた崩壊法面も該当して いる.今後は、この図8を一次抽出箇所として、詳細な現場 調査を実施していくことになる.この際、下方に続く尾根 筋が、突然、谷筋地形へ変換する急崖や遷急線の下部で位 置する傾斜地に、特に注目したい.

5. 崩壊実例の現場および融雪特性

これまで述べた国道160号七尾市庵地区道路法面崩壊は, 地形に特徴をもち,加えて,上部付近で崩壊履歴があった. そこで,同様な不安定履歴をもつ崩壊実例(主に,富山県 と石川県内で発生)を収集して,崩壊直前の融雪特性を調 査した.一方で,これまでに不安定履歴を受けずに崩壊に 到った現場実例についても整理した.

なお,ここでの不安定履歴とは,例えば,再生地すべり地 内の法面,建設中に変状や崩壊を経験した法面,防災点検 のカルテ対応法面および急崖や遷急線の下部に位置する 集水地形の法面などを要因として取り上げた.

結果を図9にまとめる. 図9では, 横軸に崩壊発生時(も しくは崩壊に近い大変状発生時) 直前24時間の融雪水量 (雪密度0.35で換算)と降雨量(融雪日の平均日気温3℃ 以上で観測した降水量は降雨量と設定)との合計値を,縦 軸には崩壊発生当日前の2日間(先行48時間)のそれら合 計値で整理した. したがって, 図中の等値線は, 崩壊直前3 日間の融雪水量と降雨量との合計値となる.

図9からは,以下の傾向が見て取れる.

 融雪期に崩壊や大変状が発生した法面(斜面)は,二 つの集合群にまとめられた.そのひとつの集合群が,前述 の不安定履歴を受けた崩壊現場となった.

② ①の不安定履歴を受けた崩壊法面(斜面)群は,横軸の崩壊発生時直前24時間の融雪水量と降雨量の合計値と縦軸のそれら先行2日間の合計値がともに小さく,図中の左下の領域にプロットされる(図9の上図参照).

③ また,不安定履歴を受けた崩壊群の幾つかは,崩壊前3 日間の積雪深がほぼ40cm以下の状況が見受けられ,この期 間で一気に融雪が進んで崩壊が発生した.

④ 一方,もうひとつの集合群は,不安定履歴のない崩壊 実例でまとめることができた.これらの崩壊実例は,横軸 と縦軸のそれぞれの値が相対的に①の崩壊実例より大き く,図中の右上の領域にプロットされた.そして,この不安 定履歴のない崩壊現場の特徴は,崩壊延長が40m以上の大 規模崩壊群でもあった.

⑤ ④の大規模崩壊群は、発生直前の気象データが異常値 と言える.例えば、降雨量100mm/日以上、気温が10℃~15℃ まで急上昇.また、融雪深30cm/日以上を記録して崩壊に到 った.なお、気温が急上昇した時間帯は、いずれも南向きの 風(南東、南南東、西南西など)が吹込んでいた.大規模崩 壊群の中には、大規模な土石流発生も含まれる.

特記すべきは、上記の二つの崩壊群を判別できる閾値が、 崩壊前3日間の融雪水量と降雨量の合計値が200mm程度を 示した点である.この傾向を踏まえ、今後の道路管理は、図 9を参考にして、特徴的な地形をもつ法面を対象に巡回監 視して行くことが望ましい.

6. あとがき

積雪深30cm程度で,多量な融雪もない気象状況下で,国 道160号石川県七尾市庵地区の道路法面が崩壊した.この 崩壊は,法面地形の特徴と過去の崩壊履歴など不安定要因 にあった.同様な崩壊事例を調査したところ,崩壊現場は

図 9 融雪期の崩壊実例の現場特性と融雪状況2)(上図は整理できた崩壊群)