

早出川の砂礫河原創出に係る 解析等検討業務 中間報告

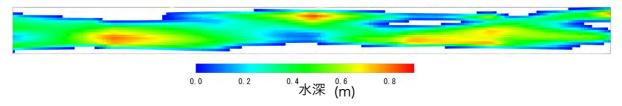
災害·復興科学研究所

複合災害科学部門

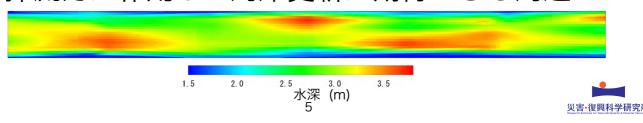
安田 浩保

得られた成果の概要

寧新潟大學


- ・強制砂州の波長を規定する水理量の把握
- ・河床形態を能動的に制御する水制工の配置間隔
- ・砂州の平衡状態の評価手法と河床更新状況の理解
- ・水面と河床面の同時計測手法の開発

治水と環境の要請を両立する河道


平常時流量(15m³/s)

中州の形成により横断方向流速が生じ、様々な 流速を好む多様な生物の棲息が期待できる河道

洪水時流量(670m³/s)

樹林化の進行の抑制のため、水路全体の十分な 掃流力が作用して河床更新が期待できる河道

研究背景及び目的

寧新潟大學

・複列砂州は、直線流路では維持されないが、拡縮水路では維持される。

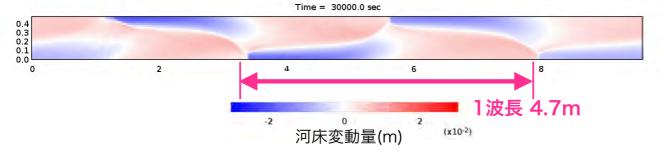
河道平面形状により砂州形状を制御できる?

早出川に川幅の周期的な変化を与えるのは困難

水制工の設置により川幅の周期的な変化と同様の効果を見込む

対象区間の水理条件

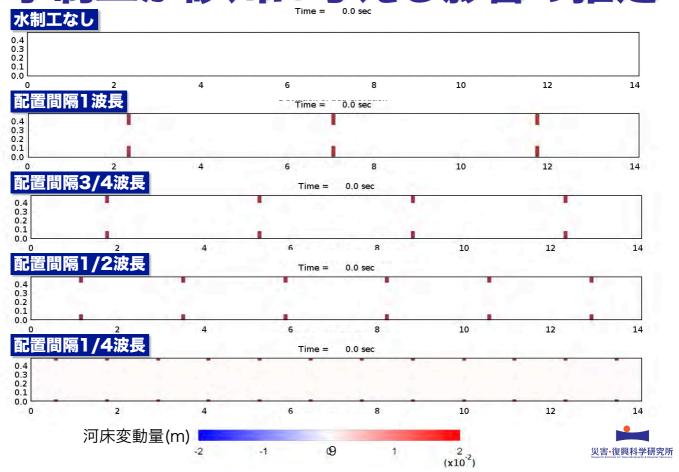
実河川スケー


川幅水深比	無次元 掃流力	水深粒径比	粒径 [mm]	水路幅	流量	水深	勾配	フルード 数
9.56	0.092	100	28.8 (0.026)	60 m	680 t/s	2.88 m	1/680	0.56
9.56	0.092	24.37	0.76 (0.014)	0.48 m	3.58 l/s	1.85 cm	1/149	0.93

実験スケール(1/125)

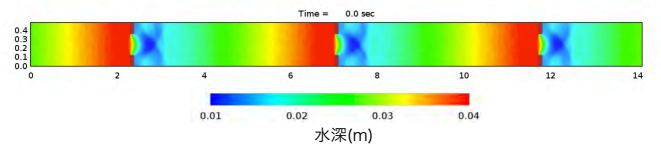
水制工が砂州に与える影響の推定


直線水路に形成される交互砂州の波長の推定

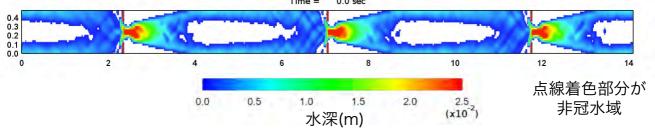

水制工が形成される砂州に与える

- 交互砂州のⅠ波長を基準長として縦断方向の間隔を決定
- ・縦断方向の配置間隔と横断幅を変えた4つの拡縮率

縦断方向間隔:1波長,0.75波長,0.5波長,0.25波長



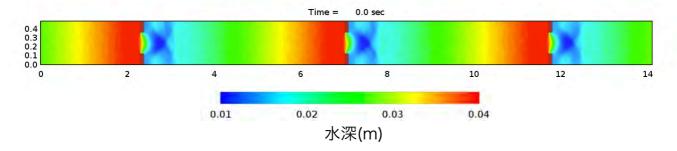
水制工が砂州に与える影響の推定



洪水・平水時の河床形状の把握や

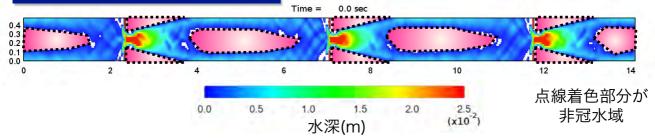
洪水時の移動床水理 完全冠水かつ有効掃流の状態

平常時の移動床水理 部分冠水となり中州が維持

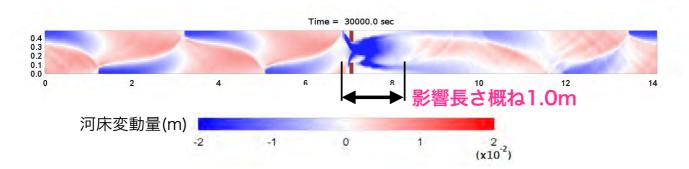


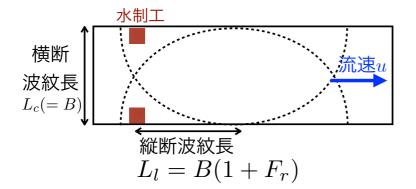
洪水時と平水時の要請を両立する河床形態が形成か

洪水・平水時の河床形状の把握や


洪水時の移動床水理

完全冠水かつ有効掃流の状態

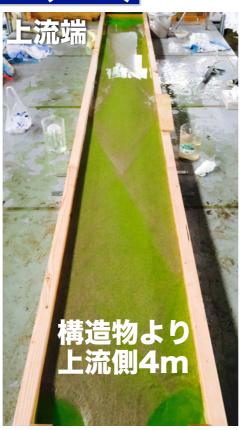

平常時の移動床水理


部分冠水となり中州が維持

洪水時と平水時の要請を両立する河床形態が形成か

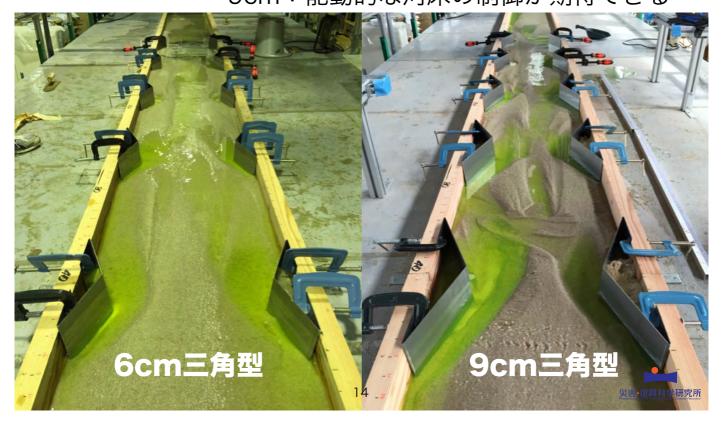
強制砂州波長と波紋長の関係。

	影響長(m)
強制砂州	1.0
衝撃波	0.93
配置間隔1/4波長	1.2


強制砂州波長と理論値の波紋長が概ね一致

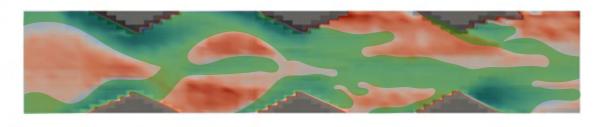
水制工による河床の能動的制御**

薄型の水制工 (6cm) 能動的な河床の制御は困難



水制工による河床の能動的制御**

三角形の水制工 6cm: 交互砂州は形成されないが流心が洗堀 9cm: 能動的な河床の制御が期待できる



水制工による河床の能動的制御**

三角形の水制工 (9cm) 平水流量は洪水時に形成された 地形を縫うように流下

上流 75cm間隔で配置

冠水域

Elevation(cm) -4.816e-01 2.5 5 7.5 1.000e+01

水制工による河床の能動的制御**

三角形の水制工 (6cm) 平水流量は洪水時の形成地形の 流心を流下するため比高差が増大か

上流

75cm間隔で配置

下流

寧新潟大學

河床形態の制御法の概要

強制砂州の波長を規定する水理量の把握

砂州波長が川幅水深比に密接に関係するのは、衝撃波の 基本波長が川幅となるためであることが分かった。また、 基本波長はFr数の関数となることが理論的に示された。

河床形態を能動的に制御する水制工の配置間隔

水制の縦断方向の配置間隔は、衝撃波の基本波長よりも 長くすれば擬似的な複列砂州、短ければ単列砂州が形成さ れる事が示唆された。ただし、室内実験による検証が不可 欠である。

