第1回 神通川堤防調査委員会資料 【参考資料】

平成30年8月9日

国土交通省 北陸地方整備局 富山河川国道事務所

<u>目</u>次

	破堤状況の	比較・	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-
2.	緩流河川の	破堤と	の	比	賋																	
	~千曲川	破堨	事	例	(日	引和	5	8	年	9	月)	~		•	•	•	•	•	•	•	2
3.	黒部川の破	堤・・	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	(
ŀ.	常願寺川の	破堤╺	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	2
5.	姫川の破堤		•	•		•	•	•	•	•		•		•	•			•	•	•	•	ָרָ ע
.	破堤地点の	特性・	•	•		•	•	•	•	•		•		•	•			•	•	•	•	(
7 .	大きな外力	継続、	護	岸ī	耐丿	コに	ょ	る	影	響		•		•	•			•	•	•	•	-

1. 破堤状況の比較

黒部川・常願寺川・姫川の堤防破堤状況と特徴の整理

北陸の急流河川の破堤実績は、過去50年程度の範囲では、昭和44年洪水黒部川、常願寺川、平成7年姫川の3事例がある。これらの破堤実績をもとに、破堤状況を比較検証すると、下記のような特徴が挙げられる。

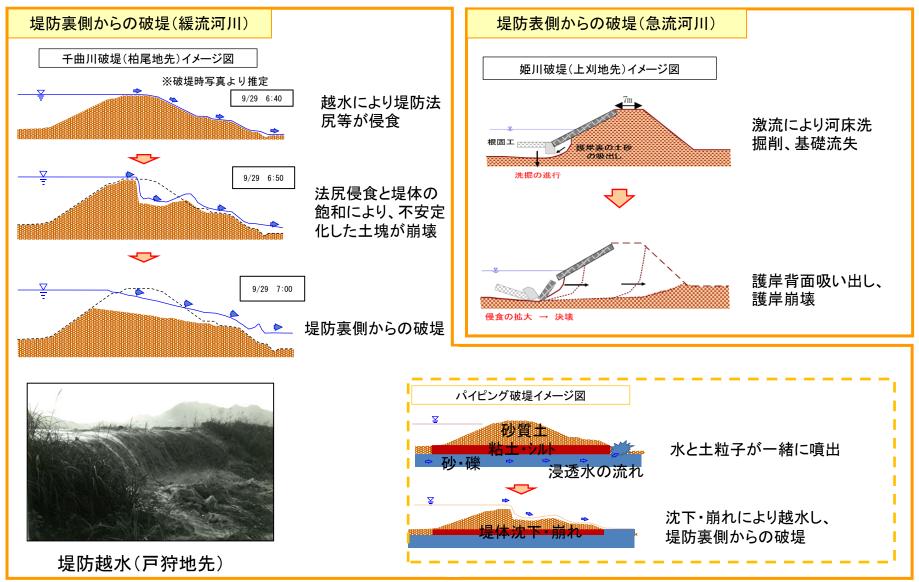
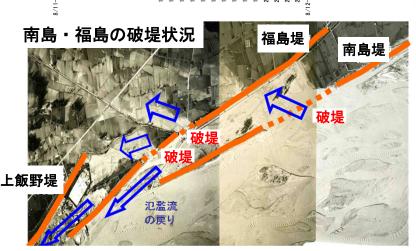

- 1. いずれの河川においても、観測史上最大の洪水を記録している。
- 2. 激流や偏流に伴う侵食・洗掘により、堤防が「表側から削り取られる」ことによる決壊となった。
- 3. 洪水ピークに至る過程において堤防が洗掘され、「ピーク流量発生から約2~3時間後」に堤防破堤と推測される。

表 河川の破堤状況比較

我 利州の政党(八九七)										
	黒部川 S.44	常願寺川 S.44	姫川 H.7	3河川破堤要因の特徴						
洪水ピーク流量(m3/s)	5,661 (観測地点·愛本)	3,975 (観測地点·瓶岩)	2,831 (観測地点・山本)	堤防破堤は既往最大洪水時に発生。なお、観測史上最大値となっている。						
堤防の破堤	ピーク流量発生から 約 2時間後	ピーク流量発生から 約 3時間後	ピーク流量発生から 約 2時間30分後	洪水ピークに至る過程において堤防が洗掘され、「ピーク流量発生から約2~3時間後」に堤防破堤と推測される。						
破堤地点最高水位 (堤防高との関係)		HWLを超過していたが、偏 流発生により数値の再現 は困難である。 (堤防高以下)	HWL−0.6m	破堤地点の最高水位は、HWL以下と なっているケースがある。						
破堤要因	堤防前面洗掘に起因する 『越水なき破堤』の発生。	堤防前面洗掘に起因する 『越水なき破堤』の発生。	堤防前面洗掘に起因する 『越水なき破堤』の発生。	急流河川は、いわゆる『越水なき破堤』を 引き起こしている。						
被災特徴と破堤メカニズム		元付工を公流して下流側	基礎工が流失、堤体土砂が吸い出され、空洞化で片持ち状態となった護岸が自重に耐えきれず崩壊・決壊に至る。							

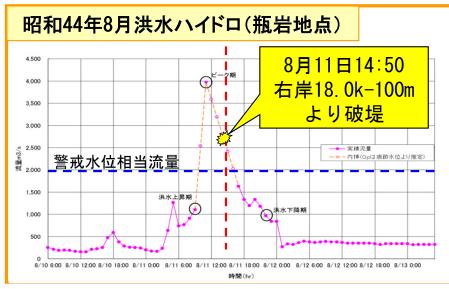
2. 緩流河川の破堤との比較 ~千曲川 破堤事例(昭和58年9月)~

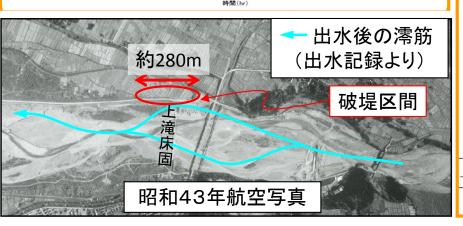

○破堤メカニズムの空間的な特徴としては、<mark>緩流河川は越流や浸透(浸透・パイピング)による堤防の「裏側からの崩れ」</mark>であり、<mark>急流河川は</mark>激流や偏流に伴う侵食・洗掘により堤防が「表側から削り取られる」ことでの決壊である。

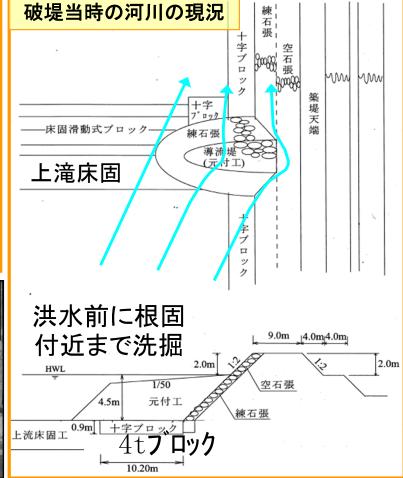
3. 黒部川の破堤

- ▶ 昭和44年8月出水(既往最大)の侵食破堤における発生事象
 - ○ピーク流量(5,661m3/s)発生約2時間後に破堤
 - ○破堤地点は常にみお筋が当たる水衝部
 - ○裏法尻で漏水発生。30分で破堤(完成堤・空石張・木工沈床)

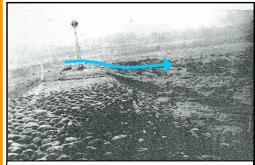
入善町福島の破堤状況


愛本堰堤操作棟

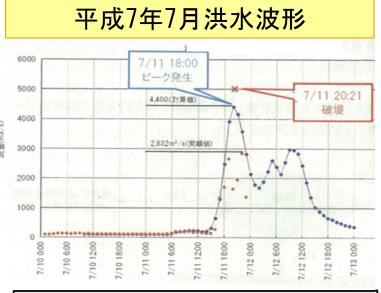

【裏法面】


- 法尻で
- 一部漏水発生

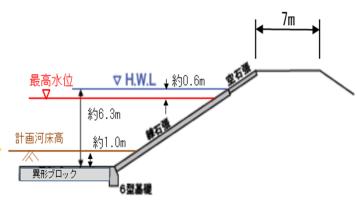
4. 常願寺川の破堤


- ▶ 昭和44年8月出水(既往最大)の侵食破堤における発生事象
 - ○偏流により左右岸水位差が増幅し、片岸でHWL超過
 - ○河床洗掘の進行により護岸裏の吸い出し
 - ○土石を伴った流水が練石護岸(根固4t)を破壊
 - ○洪水ピークから3時間後に破堤(護岸破壊後10分で280m破堤)

出 水状況


上滝床固横堤(天端高 HWL)越流状況

破堤時の堤防状況 (護岸裏の吸い出し)


5. 姫川の破堤

平成7年7月出水(既往最大)の侵食破堤における発生事象
○法線形上水衝部となり、根固めプロック(6t)・護岸基礎の流失
○法覆工の背面土砂の吸出しにより空洞ができ、その後法覆工の自重により倒壊し、破堤にいたる
○洪水ピークの2時間半後に破堤

堤防の断面形状

11日 18時にはピーク流量 規模の流量を観測。その2 時間半後の20時21分に破 堤が確認されている

破堤箇所は、直線河道が 『くの字』に曲がる箇所 に位置し、河道法線形上 の水衝部となる 護岸基礎高は計画河床より1m下がりであったが、 計画河床高より約1.7mが 洗掘されている

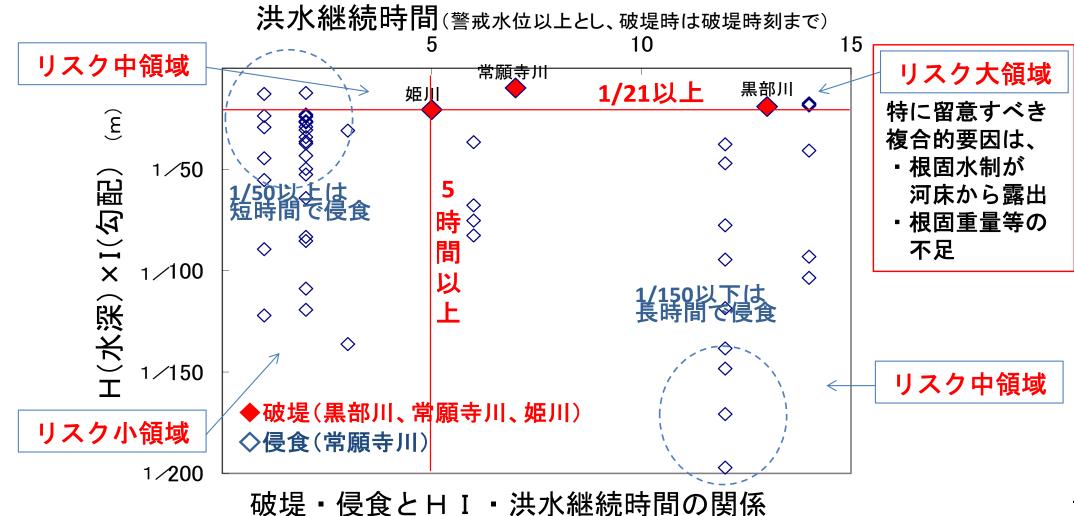
6. 破堤地点の特性

洪水特性や河道特性、護岸耐力より3破堤を比較すると、破堤の特徴(洪水規模・破堤時刻、湾曲部や砂州固定・発達の水衝部、河床洗掘、護岸構造)が明瞭となる

既往最大洪水、越水なし、洪水ピーク2~3時間後、継続時間5時間以上

河床勾配1/50~1/120、ピーク水深4~6m

共通項目


破埙		\$44 黒部川	S44 常願寺川	H7 姫川			
	<u>t°-ク流量</u>	5,661m ³ /s 既往最大	3,975m³/s 既往最大	4,400m³/s 既往最大			
洪水特性	ピーク水位	HWL-0.8m	堤防高以下	HWL-0.6m			
	破堤時刻	洪水ピーク2時間後	洪水ピーク3時間後	洪水ピーク2.5時間後			
	継続時間	13時間	7時間	5時間			
	河床勾配	1/76	1/49	1/117			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	約4m	約5m	約5.7m			
河道特性	水衝部	常時	洪水時	常時			
	河道線形	湾曲外岸	直線	湾曲外岸			
	砂州	_	洪水時発達	常時固定化			
		空石	練石 控厚0.4m	練石 控厚0.4m			
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	基礎工 根固工	大工沈床 河床洗掘	十字4t 河床洗掘・根入れ	十字6t 河床洗掘・根入れ			

湾曲外岸及び砂州の固定・発達

河床洗掘、根入れ、施設構造等

7. 大きな外力継続、護岸耐力による影響

- ▶ 破堤要因は、大きな外力継続による洗掘・侵食等であり、護岸耐力(根入れ・控厚・根固重量等)は外力との相対関係にある
- 掃流力式を構成するHIと洪水継続時間の実績より、3破堤の領域は、HI≥1/21 (摩擦速度U*2≥0.69m/s)、洪水継続時間≥5時間

