3.4 底生動物

3．4．1 底生動物の課題と原因

> 信濃川中流域では，発電取水に伴う流量の減少のため，底生動物の生息に影響を与えている可能性が考えられる。

> また，現在実施している試験放流は，この影響を緩和する効果があるのか。

西大滝㚈ム減水区間及び宮中ダム減水区間のいずれについても，非減水区間と比較し て底生動物相に明確な差は見られない。

減水年と非減水年の比較においても，流量の増加に起因すると明確に判断できる差異 は認められなかった。

したからて，現在実施している試験放流による効果を把握することはできなかった。
（1）減水区間と非減水区間の比較
ア 目別種類数による比較
信濃川中流域の底生動物は，カゲロウ目，トビケラ目及びハ工目が優占してい る。八海橋の種類数が他の地点より多い傾向が見られたが，減水区間と非減水区間において明確な差は見られなかった。（図 3．4－1，3．4－2 参照）

ィ 目別個体数による比較

信濃川中流域の底生動物は，カゲロウ目，トビケラ目及びハエ目が優占してい る。春の個体数が非減水区間より減水区間の方が多くなっているほかは，減水区間と非減水区間において明確な差は見られない。（図 3．4－3，3．4－4 参照）

瀬における目別種類数について，春，夏及び秋の結果をみると，八海橋の種類数が他の地点より多い傾向が見られる。ただし，八海橋を除くと減水区間と非減水区間で明確な差は見られない。

図 3．4－1 各地点における目別種類数（平成 11 年度調査結果，瀬）

緩流部における目別種類数について，春，夏及び秋の結果をみると，八海橋の種類数が他の地点より多い傾向が見られる。ただし，八海橋を除くと減水区間と非減水区間で明確な差は見られない。

図 3．4－2 各地点における目別種類数（平成11年度調査結果，緩流部）

瀬における目別個体数について，減水区間と非減水区間において明確な差はみ られない。

図 3．4－3 各地点における目別個体数（平成 11 年度調査結果，瀬）

緩流部における目別個体数について，春の個体数が非減水区間より減水区間の方が多くなっているほかは，減水区間と非減水区間において明確な差は見られな い。

図 3．4－4 各地点における目別個体数（平成 11 年度調査結果，緩流部）

ウ 生物指数によるスコア値での比較

「大型底生動物による河川水域環境評価マニュアル（案）」（1992 年，環境庁水質保全局）によるスコア法を用いて，各地点•環境を比較した。
スコア法は，汚染に対する感受性に基づいてあらかじめ科（ミミズ及びヒルに ついては綱）ごとに設定した値（スコア値）を使い，この合計を科の総数で除し た値（平均スコア値）によって水質環境を評価する手法である。スコア値は 1 か ら10までの値をとり，10に近いほど汚濁の程度が少なく，河川や周辺域が自然状態に近い環境であることを示している。

表 3．4－1 各スコア値に該当する主な科

スコア値	科名（ミミズ及びヒルは綱）
1	サカマキガイ科・ミミス綱
2	ヒル綱・ミズムシ科
3	モノアラガイ科・ユスリカ科
4	ガムシ科・ヒメトビケラ科
5	ゲンゴロウ科
6	コカゲロウ科・オナシカワゲラ科・ホタル科
7	カワトンボ科・シマトビケラ科・ブユ科
8	イワトビケラ科・ヒラタドロムシ科・ガガンボ科・カワニナ科
9	ヒラタカゲロウ科・ムカシトンボ・カ卌・カワゲラ科・ナガレトビケラ科
10	エグリトビケラ科・アミカ科

スコア値と河川環境評価の関係を図 3．4－5に示す。

図 3．4－5 スコア値と河川環境評価の関係

平成18年度調査における各地点•環境間の比較結果を図 3．4－4 に示す。
早瀬や平瀬では，全地点とも 7 前後の比較的高い値を示しており，減水区間で ある川井大橋•栄橋•十日町橋と減水区間外である上片貝•魚野川との間に特に差は認められない。
淵及び淵尻の減水区間，ワンドでは3 以下の低い値を示している。

図 3．4－6 環境別に見る各地点のスコア値
（2）減水年と非減水年による比較
ア 種類数，個体数及び湿重量による比較
$7 \mathrm{~m}^{3} / \mathrm{s}$ 放流時（平成 11 年度）， $10.13 \mathrm{~m}^{3} / \mathrm{s}$ 放流時（平成 $13 \sim 16, ~ 18$ 年度）及 び自然状態（平成 17 年度）の異なる流量における底生動物の生息状況の違いを整理した。なお，底生動物の生息状況は季節により変化が生じることから，調査回数の多い夏季（8月又は9月）の調査結果により比較した。出現状況の経年変化を表 3．4－2，表 3．4－3 に，種類数，個体数及び湿重量の経年変化を図 3．4－8～ 3．4－15に示す。

目別種類数及び生活型別種類数の経年変化を見ると，年によって種類数の増減及び種構成の変化は見られるが，流量の違いに対応した傾向は見られない。この他，ハ工目の掘洗型がみられない年があるが，明確な傾向は掴めなかった。

目別個体数，生活型別種類数及び湿重量の経年変化を見ると，宮中ダム減水区間（十日町橋，栄橋及び川井大橋）において，平成17年度に個体数が少ない傾向が見られ，瀬においてトビケラ目の造網型が少ない傾向が見られる。この他，平成 18年度においては，平成17年度同様トビケラ目の造網型が少ない傾向が見られ， ハ工目の掘洗型が多い傾向が見られた。
底生動物の生息は，河床材料に依存する部分が多いことから，出水による河床 の攪乱による影響は大きい。また，底生動物の移動能力は高くないことから，出水後はある程度の期間をかけて徐々に回復してくと考えられる。平成17年度は，中越地震による影響で宮中ダムによる取水量が減少し，流量が多く自然流量に近 い流量であったが，夏季の出水が他の年度に比べて多い年でもあった。とくに平成17年度の調査前には $1000 \mathrm{~m}^{3} / \mathrm{s}$ 前後の出水が 7 月 1 日から 2 週間に 1 度 の頻度で起きている。平成18年度については，調査の約1ヶ月前に河道が変化 する程の大出水が起きている。
また，平成 16 年からの個体数の変化では，平成 16 年の秋季に著しく減少し た個体数が回復しつつある途上にあるとも考えることができる。

このように，平成 17 年度の個体数の減少は，減水しなかった以外に大規模な出水などの複数の要因が考えられることから，一概に減水しなかったことによる変化であるとは考えられず，変化が明確に掴めていない。

以上のことから，種類数，個体数及び湿重量の経年変化は明確な傾向が確認で きない。

表 3．4－2 出現状況の経年変化（西大滝ダム減水区間）

綱	目	科	和名	百合居橋										生活型	掁餌型
				瀬					爱流部						
				$\frac{\mathrm{H} 11}{8 \mathrm{AR}}$	814	H15	8月	817	811	814	H15	816	817		
ウズムシ網		－	ウズムシ網											匍匐	刈取り
ニマイガイ綱	ハマグリ目	シジミ科	Corbicula											掘潜	採集
ミミス絧	ナガミミズ目	ミスミミス科	ミスミミズ科											掘潜	採集
		イトミミス科	イトミミズ科											掘潜	採集
ヒル綱	咽蛭目	イシビル科	シマイシビル		2	4								匍匐	捕食
	ワラジムシ目（等脚目）	ミマズムシ科	ミ゙ズムシ		4							2		匍浐	採集
	カゲロウ目（蛙虄目）	マタラカゲロウ科	トワヨウマタラカゲロウ											匍匐	採集
			クシゲマタラカゲロウ											匍匐	採集
			アカマダラカゲロウ	6	56	106	164				38	8		匍匐	採集
			マタタラカゲロウ科		20									匍匋	採焦
		コカゲロウ科	フタバコカゲロウ	134	8	396	16	254			10		38	遊泳	刈取り
			トビイロコカゲロウ											遊泳	刈取り
			フローレンスコカゲロウ	12										遊泳	刈取り
			サホコカゲロウ	10										退泳	刈取り
			Baetis属の数種	46	44	4	96	20			8	2		遊泳	刈取り
		$\begin{aligned} & \text { チラカヴロウ科 } \\ & \hline \text { ヒラタグ科 } \end{aligned}$	チラカゲロウ		120	4	134					2		遊昶	採集
			キブネタニガワカゲロウ		12				56					匍噮	刈取り
			シロタニガワカゲロウ		16		38					24		匍匋	刈取り
			エルモンヒラタカゲロウ	14	24		42							匍䲞	刈取り
			キョウトキハダヒラタカゲロウ											匍噯	刈取り
			ヒメヒラタカゲロウ	16	76	140	6	40	34		28			匍䲞	刈取 $り$
			ミナヅキヒメヒラタカゲロウ		12									匍匐	刈取り
	カワゲラ目（セキ翅目）	カワグラ科	Kamimuria ${ }^{\text {a }}$					2						匍匐	捕食
	トビケラ目（毛翅目）	シマトビケラ科	Cheumatopsychere											造網	採集
			Cheumatopsychere ${ }^{\text {の数種 }}$	1000	18	24	244	22				2		造網	採集
			ウルマーシマトビケラ	674	4	576	144	154					10	造網	採集
			ナカハラシマトビケラ	814	12	160	28	12						違網	啋集
			エチゴシマトビケラ	180	404	280	240	86			16	12	18	造網	採集
			シマトビケラ科	20										造網	採集
		イワトビケラ科	イワトビケラ科				28							固着	採焦
			ヒゲナガカワトビケラ			2		2						造綱	採集
			チャバネヒゲナカカワトビケラ		2		12					14		造綱	採集
			Stenopsychere											造綱	採集
		ヤマトビケラ科	Glossosoma											携巣	刈取り
		ナガレトビケラ科	タシタナガレトビケラ				8							匍匋	捕食
			ムナグロナガレトビケラ				8							匍匐	捕食
	八工目（双翅目）	ガガンホ科	Antocha		16		44	10						固着	採集
		ユスリカ科	カガンボ科		4		4							搌潜	採集
			エリユスリカ亜科	58		64	24	26	28		12			振洪	採鹪
			ユスリカ覀科									32	24	搌潜	採集
			ユスリカ科			34								掘潜	採集
	コウチュウ目（鞘翅目）ヒラタドロムシ科		Eubrianax属											匍匐	刈取 ${ }^{\text {n }}$
			個体数（個体数 $/ \mathrm{m}^{2}$ ）	3004	856	1794	1316	650	118	2	146	106	128		
			湿重量（g／m）	28.62	8.81		10.69	5.78	0.62	0.4	0.15	3.75	0.46		

図 3．4－7 夏季の宮中ダム放流量及び流入量

年度によって種類数の増減は見られるが，流量の違いに対応した傾向は見られ ない。また，種構成についても構成比の変化は見られるが，流量の違いに対応し た傾向は見られない。

図 3．4－8 目別種類数の経年変化（瀬，右：種類数，左：構成比）

年度によって種類数の増減は見られるが，流量の違いに対応した傾向は見られ ない。また，種構成についても構成比の変化は見られるが，流量の違いに対応し た傾向は見られない。

図 3．4－9 目別種類数の経年変化（緩流部，右：種類数，左：構成比）

年度によって種類数の増減は見られるが，流量の違いに対応した傾向は見られ ない。また，種構成についても構成比の変化は見られるが，流量の違いに対応し た傾向は見られない。

図 3．4－10 生活型別種類数の経年変化（瀬，右：種類数，左：構成比）

年度によって種類数の増減は見られるが，流量の違いに対応した傾向は見られ ない。また，種構成についても構成比の変化は見られるが，流量の違いに対応し た傾向は見られない。

図 3．4－11 生活型別種類数の経年変化（緩流部，右：種類数，左：構成比）

個体数は，平成 17 年度に少ない傾向が見られる。湿重量は，年度によって増減が見られるが流量の違いに対応した傾向は見られない。

図 3．4－12 個体数及び湿重量の経年変化（左：瀬，右：緩流部）

百合居橋を除くと平成 17 年度の瀬において，トビケラ目の割合が少ない傾向 が見られ，平成 18 年度の瀬及び緩流部において，ハ工目の割合が多い傾向が見 られる。

図 3．4－13 目別個体数構成比の経年変化（左：瀬，右：緩流部）

百合居橋を除くと平成 17 年度の瀬において，造網型の割合が少ない傾向が見 られ，平成18年度の瀬及び緩流部において，掘潜型割合が多い傾向が見られる。

図 3．4－14 生活型別個体数構成比の経年変化（左：瀬，右：緩流部）

個体数及び湿重量共に平成 16 年秋に大きく減少した後平成17年夏にある程度回復する傾向が見られる。

図 3．4－15 平成 16 年秋季前後の個体数及び湿重量の変化（左：瀬，右：緩流部）

スコア法による水質環境評価の結果では，地点間の差は見られず，経年変化に おいても顕著な変化は見られなかった。（1）～④参照）
（1）百合居橋
春，夏及び秋の瀬及び緩流部ともに年度によって値が上下しており，明確な傾向が見られない。

図 3．4－16 スコア値の経年変化（百合居橋）
（2）十日町橋
H11 の緩流部を除くと，春の瀬及び緩流部はほぼ同じ値を示しており年度の違いによる変化はみられない。また，夏及び秋については瀬及び緩流部ともに年度によって値が上下しており，明確な傾向が見られない。

図 3．4－17 スコア値の経年変化（十日町橋）
（3）栄橋
夏及び秋の瀬及び緩流部の値はやや増加傾向を示している。

図 3．4－18 スコア値の経年変化（栄橋）
（4）川井大橋
夏及び秋の瀬及び緩流部ともに年度によって値が上下しており，明確な傾向 が見られない。

図 3．4－19 スコア値の経年変化（川井大橋）

