

記者発表資料

令和 2年 6月22日 配布:県政記者クラブ 扱い:配布後解禁

第3回「国道41号片掛地区法面崩落 対策検討委員会」を開催しました。

〇6月18日に開催しました第3回「国道41号片掛地区法面崩落対策検 討委員会」の結果(議事概要)をお知らせします。

く結果(議事概要)>

- 崩落の要因については、現地が複雑に構成する 地質条件であったことに加え、複数回の大雨等の 影響を受けたこと等、様々な要因が複合的に重 なった結果、表層が崩落に至ったと推定される。
- ▶ 法面の恒久対策については、鋼管杭工と法枠鉄 筋挿入工との併用で法面を安定させる工法を基 本とし、早急に具体的な検討を進めること。
- 工事中の新橋への対応については、この他の案 も課題整理を行い、検討を進めること。

お問い合わせ先

英和 ■ 調査第二課長 高田 TEL:076-443-4717 (直通)

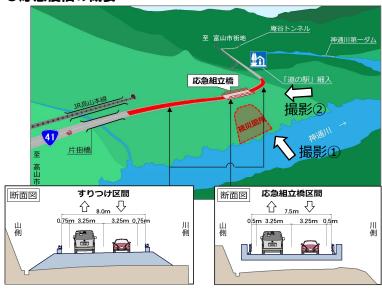
FAX: 076-443-4718

パレットとやま

国土交通省 北陸地方整備局 富山河川国道事務所

TEL: 076-443-4701(代)(夜間·休日)

〒930-8537 富山市奥田新町2番1号 http://www.hrr.mlit.go.jp/toyama/


1. 応急復旧の状況(報告)

■応急組立橋等による交通解放

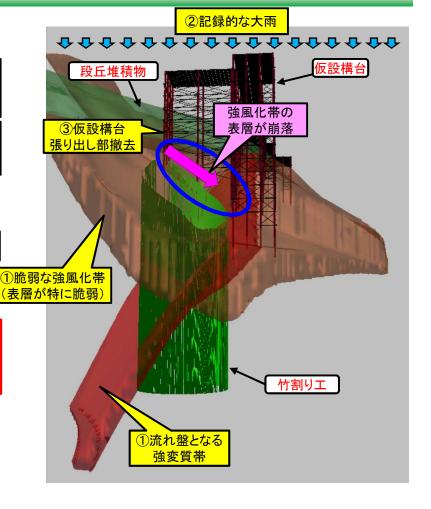
●通行止め解除日時

令和2年5月27日(水) 15:00

●応急復旧の概要

2. 崩落要因の推定

■法面崩落の要因


- ①脆弱な強風化帯や強変質帯等が複 雑に構成する地質条件
- ②H30.7豪雨や台風19号による大雨 等の自然条件

不安定化が進む法面上での作業等

上記のような様々な要因が複合的に 重なった結果、表層が崩落した

3. 法面恒久対策の比較検討

■恒久対策工法の比較

	第1案 頭部鋼管杭工案		第2案 中腹部鋼管杭工案		第3案 アンカー工案	
工法の特 徴	深層下部の変動を <u>押え</u> <u>盛土</u> 、上部を <u>鋼管杭工</u> で 抑止する案。		深層の変動を 鋼管杭工 で 抑止する案。		深層下部の変動を <u>押え盛土</u> 、 上部の変動を <u>アンカーエ</u> で抑 止する案。	
安全性	頭部に鋼管杭を打設 するため、施工中に 法面上部からの崩壊 の恐れがない。	0	鋼管杭で法面の変動を 抑制し、法面上部から 施工するため、施工中 の安全性は高い。	0	押え盛土で法面の変動 を抑制するが、法面上で は人力作業となり、施工 中の安全性は低い。	Δ
経済性	高価	Δ	安価	0	安価	0
施工性	鋼管杭工施工中に既設アンカーがすべて <u>干渉</u> するため、別途アンカー切断対策の検討が必要。	Δ	自立式鋼管杭工を法面 中腹部に施工し全体の 安定化を図るものであ り施工性は良い。	0	不陸があると受圧板が 地山に十分な力を伝達 できないため、人力によ る掘削整形が必要。	Δ
工期	最も長い	Δ	短い	0	長い	0
社会性	・現道の復旧が速い	0	・現道の復旧が速い	0	・現道の復旧が遅い	Δ

4. 工事中の新橋への対応

■P3橋脚のあり方

● 法面対策の検討結果を踏まえ、工事中の新橋の対応について比較検討を行う。

第①案: P3橋脚を現在の位置で再構築する(原設計)

第②案:P3橋脚を施工しない

第③案: 崩落した法面箇所を避け、P3橋脚位置を見直す

第①案平面図(原設計)

「第②、③案】橋脚を追加するとともに可能な限り施工済み下部工を活用

「第①案】橋脚を原位置で再構築

「第①案】橋脚を原位置で再構築

「第①案】橋脚を原位置で再構築

「第②案】P3橋脚位置を見直し